Brand: QHYCCD

QHYCCD QHY5III568M (Mono) Planetary Guide Camera (QHY5III568M)

QHY5III568M

Brand: QHYCCD

QHYCCD QHY5III568M (Mono) Planetary Guide Camera (QHY5III568M)

QHY5III568M

QHY5III568M/C is a back-illuminated planetary & guiding camera of the latest 5III V2 series. It utilizes a global shutter, and supports true hardware binning. It can reach a super-high speed at about 304fps with nearly 1080p resolution.

The QHY5III568M/C inherits all of the updates and improvements of the QHY5III Series Ver. 2 line of cameras.

$549.95 CAD

Easy Payment Options with .

$549.95 CAD

Easy Payment Options with .

Free Expert Support
Stress Free, Secure Shopping
30 Day Return Policy
Price Match Promise
Full Details What's in the Box? Specifications Reviews and Questions Articles, Videos, Software, Links

Product Description

QHY5III568M/C is a back-illuminated planetary & guiding camera of the latest 5III V2 series. It utilizes a global shutter, and supports true hardware binning. It can reach a super-high speed at about 304fps with nearly 1080p resolution.

The QHY5III568M/C inherits all of the updates and improvements of the QHY5III Series Ver. 2 line of cameras.

Features

Note: In order to activate the Charge Binning function, please select “Read Mode–2×2 FD Binning” instead of the normal binning function included in the software (Taking SharpCap for example). If you are using a color version, please turn off “Debayer Preview” first.

BSI

One benefit of the back-illuminated CMOS structure is improved sensitivity. In a typical front-illuminated sensor, photons from the target entering the photosensitive layer of the sensor must first pass through the metal wiring that is embedded just above the photosensitive layer. The wiring structure reflects some of the photons and reduces the efficiency of the sensor.

In the back- illuminated sensor the light is allowed to enter the photosensitive surface from the reverse side. In this case the sensor’s embedded wiring structure is below the photosensitive layer. As a result, more incoming photons strike the photosensitive layer and more electrons are generated and captured in the pixel well. This ratio of photon to electron production is called quantum efficiency. The higher the quantum efficiency the more efficient the sensor is at converting photons to electrons and hence the more sensitive the sensor is to capturing an image of something dim.

Global Shutter

Unlike the rolling shutter technology used in most CMOS cameras, a global shutter guarantees that the exposure time for the whole image area is uniform, beginning and ending at exactly the same time. This type of shutter is ideal for high precision applications. For high speed moving object and the atmospheric agitation the global shutter can generate undistorted imaging and realizes high picture quality.

FD Binning (Hardware Binning)

Unlike Most CMOS cameras, the camera supports charge-domain binning (FD Binning), which is the true hardware pixel binning similar to CCD cameras. In the past, only CCD sensors were capable of hardware binning. Most CMOS cameras used digital binning, which relied on algorithms for binning. The disadvantage of this binning method (using 2*2 binning as an example) is that while the signal is amplified by 4 times, it also introduces twice the amount of noise, resulting in only a doubling of the signal-to-noise ratio, and then frame rate can not be improved. In contrast, hardware binning does not amplify additional noise, resulting in a direct 4-fold improvement in the signal-to-noise ratio. What’s more, the frame rate can increase a lot even the ROI function is not activited.

512MB DDR3 Buffer

The QHY5III (Ver. 2) series planetary and guiding cameras are all equipped with a 512MB DDR3 image buffer which can effectively reduce the pressure on computer transmission, a great help for planetary photography which often requires writing a large amount of data in a short period of time. Some deep-sky astrophotography cameras on the market today only have 256MB, for example. In comparison, the 512MB DDR3 memory of the new 5III (Ver. 2) series cameras represents a significant upgrade.

New Front-End Design with Better Compatibility

QHY5III (Ver. 2) series cameras have adopted a new front-end design with better compatibility. The BFL of V2 cam is only 8mm, which means you can easily compat a V2 cam with your OAG. The basic top adapter includes 1.25 inch threads and you can still use your 1.25 inch filter. The top adapter glass of V2 can be easily swiched. One of the adavantage of changable top glasses is you can use one filter even you’re using Lens! You can add a 1.25inch-cs adapter to connect CS lens, or add a second CS-C lens for C-mount lens. The two adapters are all standard accessories of V2 cams. By the way, there’s a 1.25-inch filter wheel adapter to connect your mono planetary cam with the QHYCFW3-S filter wheel.

USB 3.2 Gen1 Type C Interface

The new QHY5III (Ver.2) series cameras all use the USB3.2 Gen1 Type-C interface. Compared to the USB3.0 Type-B interface used in the previous generation, the Type-C interface has a longer life and is more flexible.

Tip: It is recommended to use the official standard Type-C data cable of QHYCCD. As the market is flooded with a large number of poor-quality Type-C cables, casual use may lead to the camera malfunctioning. If you use your own spare cable, please make sure it is a high-quality cable.

Universal Guiding Interface

The custom interfaces of the previous generation of planetary cameras and guiders has been replaced in the QHY5III (Ver.2) cameras with a more universal ST-4 compatible guiding interface. Now, even if the guiding cable is lost or damaged, you will be able to easily get a replacement on the market at a low cost.

Indicator LED

The new QHY5III (Ver.2) series of cameras is equipped with a status indicator at the back of the camera. If the camera experiences an abnormal status, the multi-colored indicator light will help to determine the situation with different colors signifying different conditions. During normal operation this indicator light is off, so there is no worry about light contaminating the image.

What's in the Box

  • QHY5III568M Planetary Guide Camera
  • USB3.0 Type-C Cable
  • ST-4 Style Guiding Cable
  • Focus Lock Ring and Thumb Screw
  • CS to C Mount Adapter
  • 1.25" to CS Adapter
  • Filter Coated Front Window
  • Driver Download Instructions Card

Specifications

Model QHY5III568
CMOS Sensor Sony IMX568
Pixel Size 2.74μm*2.74μm
Effective Pixel Area 2472*2064
Effective Pixels 5.1 Mega Pixel
Fullwell Full Resolution: 8.8ke-
2X2 FD Binning: 9.7ke-
Readout Noise Full Resolution: 1.5e- to 2.3e-
2X2 FD Binning: 1.6e- to 2.7e-
AD Sample Depth 12-bit (output as 16-bit and 8-bit)
Built-in Image Buffer 512MB DDR3 Memory
Full Frame Rate 64.9FPS@8bit, 34.5FPS@16bit
ROI Frame Rate
  • Full Resolution
    • 1920X1080, 115.6FPS@8bit, 62.1FPS@16bit
    • 800X600, 187.2FPS@8bit, 100.5FPS@16bit
    • 480X480, 221.2FPS@8bit, 118.5FPS@16bit
  • 2X2 FD Binning
    • 1236X1032, 283.2FPS@8bit, 142.5FPS@16bit
    • 800X600, 439.6FPS@8bit, 221.9FPS@16bit
    • 480X480, 519.6FPS@8bit, 262.8FPS@16bit
Exposure Time Range 11us-900sec
Shutter Type Electric Rolling Shutter
Computer Interface USB3.0 Type-C
Guide Port Standard ST-4 Style
Telescope Interface 1.25-inch, with CS and C-Mount
Optical Window AR Anti-reflection Glass (5III568M)
IR-Cut filter (5III568C)
Back Focal Length 17mm (with adapter)
8mm(without adapter)
Weight 80g

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)

Why Should You Trust All Star Telescope?

We've Made All The Mistakes
So You Don't Have To

Learn More