Brand: QHYCCD

QHYCCD QHY600PH-C (Color) Standard Version (QHY600PH-C)

110061

Brand: QHYCCD

QHYCCD QHY600PH-C (Color) Standard Version (QHY600PH-C)

110061

Special Order
$6,346.95 CAD

Easy Payment Options with .

How do I Special Order?
Special Order
$6,346.95 CAD

Easy Payment Options with .

How do I Special Order?
Free Expert Support
Stress Free, Secure Shopping
30 Day Return Policy
Price Match Promise
Full Details Specifications Reviews and Questions Articles, Videos, Software, Links

Product Description

With the advantage of low readout noise and high-speed readout, CMOS technology has revolutionized astronomical imaging. A monochrome, back-illuminated, high-sensitivity, astronomical imaging camera is the ideal choice for astro-imagers.

The QHY600 uses the latest SONY back-illuminated sensor, the IMX455, a full frame (35mm format) sensor with 3.76um pixels and native 16-bit A/D. This sensor is available in both monochrome and color versions. The QHY600 ends the days of non-16bit CMOS cameras and it ends the days non-full frame (and larger) monochrome CMOS cameras.

Features

Equipped with a Sony IMX455, the QHY600 is a back-illuminated Scientific CMOS Camera with extremely low dark current (0.002e/p/s@-20C) using SONY’s Exmor BSI CMOS technology. QHY600 is also a zero amplifer glow camera.

The QHY600 has only one electron of read noise at high gain and full resolution and 4FPS readout speed. One electron of read noise means the camera can achieve a SNR>3 at only 4 to 6 photons. This is perfect performance when conditions are photon limited, i.e., short exposures, narrow band imaging, etc., making this large area sensor ideal for sky surveys, time domain astronomy, fluorescence imaging, DNA sequencing and microscopy.

TRUE RAW Data

In the DSLR implementation there is a RAW image output, but typically it is not completely RAW. Some evidence of noise reduction and hot pixel removal is still visible on close inspection. This can have a negative effect on the image for astronomy such as the “star eater” effect. However, QHY Cameras offer TRUE RAW IMAGE OUTPUT and produces an image comprised of the original signal only, thereby maintaining the maximum flexibility for post-acquisition astronomical image processing programs and other scientific imaging applications.

2GB DDR3 image buffer

In order to provide smooth uninterrupted data transfer of the entire 60MP sensor at high speed, the QHY600 has 2GB DDR3 image buffer. The pixel count of the latest generation of CMOS sensors is very high resulting in greater memory requirements for temporary and permanent storage. For example, the QHY600 sensor produces about 120MB of data per frame. The data band-width is also increased from the original 16-bits to the current 32-bits. Transferring such a large file sizes necessarily requires the camera to have sufficient memory. The QHY600 has adopted a large-capacity memory of up to 2GB. Data throughput is doubled. This large image buffer meets the needs of high-speed image acquisition and transmission of the new generation of CMOS, making shooting of multiple frames smoother and less stuttered, further reducing the pressure on the computer CPU.

Anti-Dew Technology

Based on almost 20-year cooled camera design experience, The QHY cooled camera has implemented the fully dew control solutions. The optic window has built-in dew heater and the chamber is protected from internal humidity condensation. An electric heating board for the chamber window can prevent the formation of dew and the sensor itself is kept dry with our silicon gel tube socket design for control of humidity within the sensor chamber.

Another advantage is that when using some computers that do not have fast processors or have poor support for USB 3.0, the computer can’t transfer high-speed data well, and the data is often lost. The DDR can buffer a lot of image data and send it to the computer. Even if the USB 3.0 transmission frequently gets suspended, it will ensure that data is not lost. There are options in SharpCap to turn DDR buffering on or off. The current version of the ASCOM driver works in DDR mode.

Extended Full Well Capacity and Multiple Read Modes

With a pixel size of 3.76um, these sensors already have an impressive full well capacity of 51ke. Nevertheless, QHYCCD has implemented a unique approach to achieve a full well capacity higher than 51ke- through innovative user controllable read mode settings. In extended full well readout mode, the QHY600 can achieve an extremely large full-well charge value of nearly 80ke- and the QHY268C can achieve nearly 75ke-. Greater full-well capacity provides greater dynamic range and large variations in magnitude of brightness are less likely to saturate. The QHY600 / 268C have three readout modes with different characteristics.

Other Features

  • Native 16 bit A/D: The new Sony sensor has native 16-bit A/D on-chip. The output is real 16-bits with 65536 levels. Compared to 12-bit and 14-bit A/D, a 16-bit A/D yields higher sample resolution and the system gain will be less than 1e-/ADU with no sample error noise and very low read noise.
  • BSI: One benefit of the back-illuminated CMOS structure is improved full well capacity. This is particularly helpful for sensors with small pixels. In a typical front-illuminated sensor, photons from the target entering the photosensitive layer of the sensor must first pass through the metal wiring that is embedded just above the photosensitive layer. The wiring structure reflects some of the photons and reduces the efficiency of the sensor. In the back- illuminated sensor the light is allowed to enter the photosensitive surface from the reverse side. In this case the sensor’s embedded wiring structure is below the photosensitive layer. As a result, more incoming photons strike the photosensitive layer and more electrons are generated and captured in the pixel well. This ratio of photon to electron production is called quantum efficiency. The higher the quantum efficiency the more efficient the sensor is at converting photons to electrons and hence the more sensitive the sensor is to capturing an image of something dim.
  • Zero Amplify Glow: This is also a zero amplifer glow camera.
  • TRUE RAW Data: In the DSLR implementation there is a RAW image output, but typically it is not completely RAW. Some evidence of noise reduction and hot pixel removal is still visible on close inspection. This can have a negative effect on the image for astronomy such as the “star eater” effect. However, QHY Cameras offer TRUE RAW IMAGE OUTPUT and produces an image comprised of the original signal only, thereby maintaining the maximum flexibility for post-acquisition astronomical image processing programs and other scientific imaging applications.
  • Anti-Dew Technology: Based on almost 20-year cooled camera design experience, The QHY cooled camera has implemented the fully dew control solutions. The optic window has built-in dew heater and the chamber is protected from internal humidity condensation. An electric heating board for the chamber window can prevent the formation of dew and the sensor itself is kept dry with our silicon gel tube socket design for control of humidity within the sensor chamber.
  • Cooling: In addition to dual stage TE cooling, QHYCCD implements proprietary technology in hardware to control the dark current noise.

Model Notes:

QHY600 Series have mutliple models which covers both photographic and scientific using. Below list different types of QHY600 PH (photographic) series:

  • QHY600PH : Standard version for amateur astrographers
  • QHY600PH SBFL : it has shorter back focal length compared with other PH types
  • QHY600PH L : a Lite, shorter and cheaper version

Specifications

CMOS Sensor SONY IMX455
Mono/Color Color
FSI/BSI BSI
Pixel Size 3.76um x 3.76um
Effective Pixel Area 9576*6388 (9600*6422 with overscan and optically black area)
Effective Pixels 61.17 Megapixels (effective area)
Sensor Size Full Frame 36mm x 24mm
A/D Sample Depth
  • 16-bit (0-65535 levels) at 1X1 binning
  • 18-bit at 2X2
  • 19-bit at 3X3
  • 20-bit at 4X4 software binning
*QHY600 uses the software digital binning for 2*2binning. With digital sum, 2*2binning will be four 16-bit summed then it is 18-bit.
Full Well Capacity (1×1, 2×2, 3×3) Standard Mode: 51ke- / >204ke- / >408ke
Super Full Well Mode: 80ke- / >320ke- / >720ke-
Full Frame Rate

USB3.0 Port Image Transfer Speed

  • Full Frame Size: 4.0FPS (8-bit output)
    Full Frame Size: 2.5FPS (16-bit output)
    7.2FPS at 9600×3194, 22.5FPS at 9600×1080, 28FPS at 9600×768, 47FPS at 9600×480, 160FPS at 9600×100
  • Fiber Port Image Transfer Speed (QHY600Pro only)
  • Full Frame Size: 4.0FPS (16-bit output)
Readout Noise 1.0e- to 3.7e- (Standard Mode)
Dark Current 0.0022e-/p/s @ -20C 0.0046e-/p/s @ -10C
Exposure Time Range 40us - 3600sec
Unity Gain* 25 (Extended Full Well Mode) *
*With the improvement of the CMOS technology, the 16bit CMOS camera has been released, like QHY600/268/411/461. For these cameras, even in lowest gain it has beyond the requirement of unit gain (less than 1e/ADU due to sufficient samples) So you can directly set gain 0 as start. Please note QHY600/268C/411/461 has extend full well mode. In this mode you still need to find out the unit gain position.
Amp Control Zero Amplifer Glow
Firmware/FPGA remote Upgrade Supported Via Camera USB Port
Shutter Type Electric Rolling Shutter
Computer Interface USB3.0
Built-in Image Buffer

DDR3 memory

PH & PH SBFL ver.: 2GBytes (16Gbit)
Lite ver. : 1GBytes (8Gbit)

Hardware Frame Sequence Number Supported
Cooling System Dual Stage TEC cooler:
Long exposures (> 1 second) typically -35C below ambient)
Short exposure (< 1second) high FPS, typically -30C below ambient)
Note: Test temperature +20°
Optic Window Type AR+AR High Quality Multi-Layer Anti-Reflection Coating
Anti-Dew Heater Yes
Telescope Interface M54/0.75
Back Focal Length QHY600PH&QHYPH-L: 17.5mm+6mm (±0.2)
QHY600SBFL: 14.5mm*
*The BFL Consumed equals 12.5mm when connecting QHYCFW. About the defination of *BFL Comsumed* and our adapter system please view: https://www.qhyccd.com/adapters/
Weigth PH Version: 850g
Lite Version: 790g
Power 40W/100%
20W/50%
13.8W/0%

Customer Reviews

Be the first to write a review
0%
(0)
0%
(0)
0%
(0)
0%
(0)
0%
(0)

Why Should You Trust All Star Telescope?

We've Made All The Mistakes
So You Don't Have To

Learn More